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LETTER TO THE EDITOR 

STM imaging of a nanometre conducting structure in the 
exponential approximation 

M Sumetskii 
Leningrad Electrical Engineering Institute for Communications, Moika Embankment 61, 
Leningrad 191065, USSR 

Received 12 December 1989 

Abstract. The correspondence between the STM image and the contours of a nanometre 
conductor lying under a planar insulating surface is investigated theoretically. A simple 
model is considered in which the cross sections of the potential barriers in the vacuum and 
the insulator are rectangular. Both the direct and inverse problems are solved in analytical 
parametric form using the exponential approximation for the tunnelling current. 

Considerable success has already been achieved in the creation of nanometre structures 
of preselected form [l, 21. Recently, in [3], different configurations with the charac- 
teristic dimension of 60 A were reproduced on a metallic surface from STM-fabricated 
craters with depth and width 120  A. Similar operations can naturally be carried out also 
on a thin conducting film lying on an insulating substrate, thereby realising nanometre 
lithography. When an insulating film fixing the conductor is superimposed, an important 
problem in the investigation of such a formation arises. 

Consider a nanometre conductor placed near an insulator surface as shown in figure 
l(a). The insulating film is assumed to be transparent to tunnelling electrons. Thus it is 
possible to record a current between the nanometre conductor and the STM tip by 
bringing the tip near to the surface of the film. 

Let us assume, for simplicity, that the vacuum-insulator interface is planar (in general 
its shape can be determined by STMor AFM [4]). We will consider large-scale (nanometre) 
contours of the insulator-conductor interface, f&), with dimensions much larger than 
the interatomic distance and electron wavelength. Therefore, the length of the current- 
carrying tunnel space in the vacuum and insulator must be large compared with these 
distances. 

The method used below, which connects the STM image to nanometre conductor 
contours, is essentially one of the simplest versions of tunnelling microscope theory [5- 
71. In the present paper (unlike in [5-7]) the exponential approximation for the tunnel 
current is used under the natural assumption that the corresponding pre-exponent, 
which depends on the surface geometry and electron local density of states, is a function 
of the tip coordinates that varies considerably more slowly than the action taken along 
the most probable tunnelling path (MPTP). 
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Figure 1. (a )  Planar picture of the disposition of the nanometre conductor C in the insulator 
I and of the STM tip T in the vacuum V. The broken line AIAoAl is the MPTP. Axis y is 
perpendicular to the page. ( b )  Potential energy diagram section along the MPTP. 

Consider the model where the cross sections of the barriers in the vacuum and 
insulator are rectangular (figure l(b)) i.. In the exponential approximation, the tunnel 
current j = exp( -2s), where 

is the absolute value of the action taken along the MPTP. Here (xl,fl(xl)), (x2,f2(x2)) 
and (xo, 0) are the rectangular coordinates of the points of intersection of the MPTP with 
the surface of the STM tip, the surface of the nanometre conductor, and the surface of 
the insulator, respectively (figure 1). y1 and y2 are absolute values of the corresponding 
wave numbers. We use the vector notation x = (x, y ) .  

If the STM tip radius is small compared with the typical value of the curvature radius 
of the conductor investigated then the function fl(x) defines the trajectory of the tip 
coinciding with the STM image. The tip coordinates (xl,fl(xl)) and conductor contours 
f2(x) being given, the MPTP is the broken line determined by minimising the action (1) 
over x2 and xo. This leads to the simultaneous equations 

(1) 2 112 s(xo,x1,x2) = rl(f:(xl> + 1x0 -x112)1’2 + Y2(fXX2) + 1x0 -21 ) 

2 112 r1(xo - XI)/(f?(Xl) + 1x0 - x1 I 1 

xo = x2 + f2(x2)fzr(x2)* 
+ YZ(X0 - X2)/” + 1x0 - x2 1’) 1/2 = 0 (2) 

The first of these equations is a well known (from geometrical optics) condition describ- 
ing the inverse proportionality of cosines of incident ray angles to the corresponding 
wave numbers. The second equation represents the perpendicularity of the MPTP and 
f2(x) at their point of intersection (x2, f2(x2)). The action s in these equations for the 
exponential approximation considered is constant because the value of the current in 
the STM measurements is constant. The STM imagefl(xl) can be expressed in terms of 
conductor contours f2(x2) by solving (2) in the parametric form: 
fl = Y T 2 [ Y :  + (Y? - r:>lfir(X2)1211’2[Y2f2(X2) + 41 + lfir(x2)/2)-1/21 

x1 = x2 + fir(X2)[(1 - Y:/Y:)f2(x2) - ( s Y 2 / Y : ) ( l  + /f2r(X2)l2) -ll2I* 
(3) 

Here fl > 0 and f2 < 0 always. Equations ( 2 )  and (3) allow us to perform the scale 
t Such an approximation appears to be satisfactory for materials with small carrier concentrations. In a more 
general case, barrier bending and non-plane vacuum-insulator interfaces can be considered using more 
complicated models and computer investigation. In this communication we restrict ourselves to the indicated 
simplest model. 
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Figure 2. STM tip trajectory for the cylindrical 
conductor. 

transformationsfi -+ Ayl/$ and xi + x,yl/s, which permits us to exclude the dependence 
on s thus leaving only the dependence on y 2 / y 1 .  For y 1  = y 2 ,  equations (3) describe the 
image of a conductor surface without an insulating film. Equations (3) can be easily 
simplified for the case y2 /y1  Q 1 which holds, e.g., when the conductor and insulator are 
made from semiconductor materials of Al,Gal -,As type. 

If the surface of the conductor has slight bending, then omitting the terms containing 
the derivative f, we have 

f l ( X )  = d Y 1  + ( Y 2 / Y l ) f 2 ( 4 .  (4) 
Thus the slope of the conductor surface with slight bending, when imaged, diminishes 
by y2 /y1  times. 

For a large slopef,, equations ( 3 )  give 

lflx(x>l = Y2(Y: - Y: ) -1 /2  ( 5 )  
regardless of the actual form off2@). The slope of the STM tip trajectory cannot exceed 
the value y 2 ( y :  - y : ) - l l 2 .  This follows from the remarkable relation 

f l x ( X 1 )  = Y2f2&2) /[Y?  + (Y: - Y:>lf2.r(x2)1211’2 (6) 
which can be obtained by taking derivatives of both parts of ( 3 )  with respect to x2. Using 
(6) we can easily invert equations ( 3 )  and obtain the parametric expression for f2(x2)  
symmetrical to (3): 

f 2  = Y:2[Y: + (Y: - Y : ~ l f l x ( ~ 1 ) 1 2 1 1 ~ 2  [ Y l f l ( X l )  - 41 + l f l x ( x l ) 1 2 ) - 1 ~ 2 1  

x2 = x1 +flX(X1)[(1 - Y:/Y;)fl(xl) + (SYI/Y2Z)(1 + l f l x ( ~ 1 ) / 2 ) - 1 / 2 1 .  

(7)  

These equations can also be obtained from (3) by making the substitutions f l  t) -f2, 

x1 *x2. It follows from (7) that the MPTP is perpendicular to the STM tip trajectory at 
their intersection point (xl, fl(xl)). 

Let the conductor surface be planar, f 2 ( x )  = a - x. Then it can be obtained from (3) 
that 

fl(x) = [s(l + u2)-1/2 + y 2 a  * x ] / [ y ?  + ( y :  - y:)U2]’’2. (8) 
So the planar surface is transformed into a planar image. 

Let us consider the image of the cylindrical conductor whenf2(x) = ( R 2  - x2)1/2 - b 
(figure 2). In order to avoid cumbersome formulae we shall not reproduce the expression 
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forf,(x) which can be found by solving the algebraic equation to the fourth order. The 
STM image of the conductor can be obtained in a restricted sector defined by the angle 
cp (figure 2). The image enlarges the conductor surface along x by a factor of c = 
( d 2  + b2)’l2/R, and has the maximum distance from the sample surface equal tofl(0). 

It is easy to obtain the following expressions for the parameters introduced: 

9 = 2 cos-’[y2b/(s + y 2 R ) ]  d = [ ( s / Y ~  + R)2 - b2]”2  
(9) 

5 = s / y 2 R  + 1 fl(0) = (l/YI)b + Y2(R - b)l. 
For example, a sector with 9 = n/2 can be observed only when s 2 ( f i b  - R)y2;  then 
fl(0) 3 (fi - l ) y , b / y , .  Thus, if the conductor parameters R and b are known, we can 
select the value of s (and hence the current j )  so that the surface of the conductor can be 
measured in a preselected sector q. In the above-mentioned case y2/y1 1, the image 
of the cylindrical surface is hyperbolic: 

The case of a straight thin conducting wire parallel to the surface (x, 0) is essentially 
the limiting case of the cylindrical conductor as R + 0. In order to search out thef,(x) 
we must putf2(x2) = - b in equations (3) and excludef&. Unfortunately the result is very 
cumbersome because the problem is again reduced to an algebraic equation to the fourth 
order. Equations (9) and (10) are valid for a wire when R tends to zero. 

Note that for a given current j ,  part of the conductor surface remains inaccessible to 
observation. In some cases it is possible to observe more distant parts of the surface by 
reducing the current j .  In other cases, when the conductor surface has both convexities 
and concavities, the enlargement of the tunnelling space can lead to a diminishing of its 
visible part. Nevertheless, the fact that equations (3) can be inverted seems remarkable. 

In summary, by means of a simple model example we have demonstrated the 
possibility of performing a theoretical determination of the correspondence between 
contours of nanometre conductors under tunnel-penetrative film and the STM image. 
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